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The known representations of scalar biharmonic function in a three- 
dimensional domain by means of three-dimensional harmonic functions are 
considered jointly as a general representation of a biharmonic function 
through harmonic ones, independently of the problem regarding the possi- 
bility of reducing the number of such functions. This representation is 
supplemented by an expression containing plane harmonic functions. 

In employing this expression for the construction of the general so- 
lution of the basic equations of the theory of static elasticity for an 
isotropic body, it is possible to obtain a generalized solution of 
Papkovich. which includes two of his separate propositions and which is 
supplemented by a solution using plane functions, which do not follow 
immediately from the other ones. One of the two methods indicated by him, 
which leads to a differential relationship between harmonic functions, 
may be represented in a form which contains independent functions. 

1. On the representation of biharmonic through harmonic 
functions. (a) We assume that a biharmonic scalar function B, con- 
sidered in a three-dimensional domain, may be represented in the form of 

a product of two scalar functions R and S, which must be four times 

differentiable in this domain: 

B = HS (1-l) 

'Ihen the condition for the function B to'be biharmonic may be repre- 

sented in the form: 

R(aas>+4can>.(C7L?S)+4(~;/2R). -(A”4 + 

+2n(R)c/nS)+4(~‘3R).(SS)+cnnH)S=o (1.2) 
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Here is Hamilton's operator (&la), A is Laplace's operator, and 
the dot is the symbol for scalar multiplication. In order that the dven 
equation is satisfied for arbitrary functions R and S, it is necessary 
that each additive term on its left-hand side be equal to zero separately. 

Excluding from our considerations the trivial case when one of the 
functions, R or S, is an arbitrary biharmonic cne, and the other is a 
constant, it is easy to conclude that the indicated requirement of vanish- 
inR of each additive term will be satisfied for most general functions R 
and S, in the following four cases: 

1) VR = 0, V&S = 2b; 3) V2R= 0, _/lS = 2c (1.3) 

2) VR=b, 77AS = 0; 4) p2R= 2~1, f&s-o 

where b is a constant vector, c is a constant scalar and I is the unit 

tensor of rank two. Obviously, in view of the symnetry of the equation 
(1.2) with regard to functions R and S, their properties may be inter- 
changed. 

Designating by Cp a harmonic function in the three-dimensional domain 
considered and indicating by K and L the constant tensors of rank two 
and three, respectively, the results of integration of equations (1.3) 
may be represented as follows: 

1) R=a, S = @ + K . . . rr + L . . . rrr 

2) R= ab-r, S=D+K.. rr 

3) R=a+b.r, S=@+K.. rr (f-4) 

4) R=a+b-r+ cr2, s-0 
(L(‘i2) + L&s) + L(%‘) = b 

9 
K” = c) 

where a is a constant vector, r is the position vector of the point under 
consideration, I- is its modulus, p is the scalar contraction of the 
tensor K of rank two, L(lo2) is the scalar contraction of the tensor L 
of rank thre 
L(2.3) 

with respect to its first and second ranks; analogously, 
andL 3.1) P indicate the scalar contraction of tensor L with res- 

pect to its second and third ranks, and with respect to its third and 
first ranks, respectively. 

We shall use the results of the fourth case since it will be shown 
later that the results of the remaining cases can be reduced to it. 'lhe 
function B in this case, in accordance with (1.1) and as a consequence 

of representation of the fourth group of equations (l-41, will be of the 

form: 

B=(a+r-b+r2c)@ (1.5) 

Obviously, a more general formula for the biharmonic function may be 
obtained by adding such representations as (1.5), in which the constants 
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and the value of the harmonic function Cp are charred. 

Desimating such variable constants and functions by the subscript n, 
we introduce harmonic scalar functions and a harmonic vector function 

n n n 

The biharmonic function B may then be written as 

B=F+r-G+raH (1.6) 
Returning to the first three groups of equations (1.4), it should be 

noted that in using them for the construction of the biharmonic function 
in accordance with formula (l.l), there occur also the products a(rr . . 
K+ rrr . . . 15.) and (a + nblhr.. k), which represent rational poly- 
nomials of second and third demee with respect to the variables, as may 
be easily verified, which may be obtained with the aid of formula (1.6). 

(b) Gt the three-dimensional harmonic function S be of the form: 

s=0,+20, (1.7) 

where aI and $ are two harmonic functions at the point of a domain in 
a certain plane, and z is measured along the normal to this plane. 

If this expression is substituted into (1.2), then it takes the form: 

4(V2R)..[V20~ -i- ~(V~0,,)+k(V0z)+(V0~) k]+ 
+ 4(VAR).[V0)r+z(V0,)+ @kl+ (AAR)(0,, +~0~)= 0 

where k is in the r-direction; in the absence of such a point, or if the 

vectors are oblique, the multiplication has to be considered as a dyadic 

one. 

The given equation will be satisfied independently of the particular 
form of the plane harmonic functions CD and a, if 

V2R = 2 [c (I - kk) + gkk] 

where c and g are two constant scalars. From this follows the expression: 

R = a+r-b + p2c + z?g 

where a, b and r take on the same values as earlier in formula (1.51, 
and p is the modulus of the position vector of the point in the plane 

normal to the z-axis, i.e., in a plane in which the arguments of func- 
tions aI and @* vary. 

The harmonic function B to be found will be in this case, as a conse- 
quence of (1.1) 

Adding such expressions with different values for the constants and for 
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the functions @I and 9, B may be expressed by the equation: 

B = F, + r - G1 + zr ‘G, + p”Pll+ @Pa + z9Ps (1.8) 

Here F,, PI. P2 and P7 are plane, mutually independent harmonic scalar 

functions and c1 and C2 are harmonic vector functions, whose three com- 

ponents along the coordinates are represented by plane scalar functions. 
If the above expression is canpared with the representation (1.6), it 

may be noted that some of the additive terms of formula (1.8) do not 

follow invnediately from equation (1.6). 

In fact, putting, for example, H = z Q2, we find 

r”H = (Zp* + 2”) 0s 

where the decomposition of the right-hand side into two mutually inde- 

pendent additive terms, like the two last ones in formula (1.8), does not 

take place. Neither are they decomposed with the aid of other additive 

terms of the representation (1.6). 

(c) Seeking to obtain an expression of the three-dimensional biharmonic 
function through harmonic ones, which would enter differently into such 

an expression, we supplement formula (1.6) by additive terms which would 

ascertain a direct occurrence of therms which enter into equation (1.8). 

Keeping in mind that expressions of the type (1.8) may be constructed 

separately for each of the three mutually perpendicular planes of three- 

dimensional space, the supplementary additive term, which shall be desip;- 

nated by BP, will be given the form 

B,=rrr...P=rS...P 

where P is a three-component tensor of rank three of special construction 

represented by formula 

P = P,iii + Pvjjj + P,kkk (1.9) 

Here Pz, Py and PE are three harmonic functions in certain domains 

which are situated on mutually orthogonal planes, whose normals are indi- 

cated by subscripts, while i, j, k are unit vectors of the Cartesian 
system of coordinates. 

After having supplemented formulas (1.6) by this expression, we obtain 

the following representation of the biharmonic function: 

B===F+r-G+r2H+r3...P (1.10) 
In Cartesian coordinates this expression will take on the form: 

B=F+xGx+yG,+zG,+(x”+y2+z2)H+ 
+ SPX (Yt 4 + Y3PY (6 4 + z3Pz (27 Y) 

where Gx, G, and GZ are the coordinate components of vector G. 
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Since, in the solution of concrete problems it may be desirable to 

have at our disposal different forms of additive terms in the ri&t-hand 
side of equation (1.101, we shall conserve in this equation all the addi- 

tive terms, as we proceed to the general constructions in three-dimensional 
domains. 

2. General solution of the basic equations of the theory 
of elasticity. As is known, the problem concerning the determination 

of displacements and stresses which are produced in an isotropic elastic 

body, subjected to the action of external body and surface forces, may 

be reduced to the problem concerning the state of stress in the same 

body in the absence of body forces, but subjected to some different sur- 

face tractions. This possibility of elimination of body forces in the 

solution of the basic differential equations of the theory of elasticity 

will be used here. 

We start out from the following representation of the displacement 

vector in an elastic isotropic body: 

u=v-VB (2.1) 

where v is a harmonic vector and B is a biharmonic scalar. From the 

differential equation of equilibrium 

(I - 2v)A u + v2.u = 0 

where v is Poisson’s ratio, it follows that the functions v and B should 

be related by the expression 

‘i7.v=2(1--v)~B (2.2) 

‘Ihe expressions for the displacement conponents along the coordinates, 

analogous to the representation (2.11, for the case in which the vectot 

v had only one component, were used already by Hertz [ 1 I. For the plane 

problem of the theory of elasticity such formulas were obtained in their 

complete form by love [ 2 1. 

let us use equation (1.10) to represent the bihanaonic function B. In 

this case equation (2.2) will take on the form: 

V .v=4(1-v)[V.G+3H+ 2r-f~N)+3r.Pt’;21] (2.3) 

let us now represent the vector v as: 

v=4(1 -v)(G +w) (2.4) 

where w is also a harmonic vector; we find then fran the preceding equa- 
tion, that the vector w should satisfy the equation 

A-w = 3N + r * (VH) + 3r . P(‘z9) (2.5) . 

The displacement vector u, represented by equation (2.11, may also, 
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in consequence of expressions (2.4) and (2.10), be represented as: 

u=4(1 -v)(G+w)-V((F+r.G+?H+fl.. .P) (2.6) 

‘Ihe given equation represents a generalized solution of Papkovich, 

inasmuch as it includes two forms of the solution which were suggested 

by him separately and which are supplemented by additive terms consist- 
ing of plane harmonic functions which he did not take into account. 

In fact, if all the functions on the right-hand side of this equation 

vanish, except F and G, we obtain the representation 

u=4(1 -v)G-V((F+r.G) (2.7) 

which is known in the literature as the Papkovich-Neuber solution, 

established by Grodskii [3,4,5,6 1 as well as these authors. A 
particular form of this solution for the case when two coordinate com- 

ponents are absent in the harmonic vector G, was obtained earlier by 

Boussinesq 17 1 . 

If, on the right-hand side of equation (2.6), all the functions are 

eliminated, except w, F and H, then we obtain the formula 

u==4(1- v)w-V((F+r2H) (2.8) 

which was also suggested, independently from the previous one, by 
Papkovich as a solution of the basic equations of the theory of elasti- 

city I. 4 1. 

‘Ihe relationship between the harmonic vector w and the function H, by 

virtue of (2.5), will be 

T7.w =3H+2r-$ (2.9) 

which was also indicated by him. However, the integral of this equation 

was not obtained by him. 

The question regarding the possibility of eliminating one or the 

other function in the first form of the solution (2.7) was a subject of 
special studies. 

Neuber has shown how one of the components of vector G or the scalar 

F may be eliminated from the general expression for the displacement 

vector. Papkovich [ 4 1 established that the scalar function F may be 
omitted only in the case when v f 0.25. Finally, Slobodianskii found that 

the question regarding the possibility of elimination of the function F 
depends also on the demee of boundedness of the volume occupied by the 
body considered and on the presence of internal closed boundary surfaces 

181. 

Ihe functions which enter into (2.6) are not canpletely independent, 
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since some of them have to satisfy equation (2.5). It is possible, how- 

ever, to free oneself from this dependence by means of integration. With 

this aim in mind, we introduce a harmonic vector R, determined by 

H=v.R (2.10) 

and a harmonic tensor Q of rank four in the form 

Q = iii ]Qx,(y, r)j + QxL(y, 2) kl t jjj [Qyrk dk -tQux(~, 4 il + 
+fiUQ&, Y) i + Q&, ~18 (2.11) 

where Q (y, z), Q (y, z) etc., are functions of the two Cartesian co- 

ordinattg of the p%t indicated; this tensor is related to the tensor P 
by the condition 

P=Q.r/ (2.12) 

It is easily verified that the integral of equation (2.5) may be re- 
presented in this case as 

vv==r(‘\‘.@+r.(r\7R) - (L7R).r+3r.Q”“’ + 4(11_v) (rvS + VXT) (2.13) 

where S and T are arbitrary harmonic functions in the domain considered, 

a scalar and a vector function, respectively, and x is the symbol for 

vector multiplication. 

Formula (2.6) for the displacement vector then takes the form: 

u=vF+v X T+4(1-v)[G+r~(~~R)+r~(~R)-(~7’R)~r+3r~Q(’~*)] - 

-V[r.G+r2(V7R)+r3...(QSV)] (2.14) 

where S - F is combined into + F, or also in the form: 

u=~F+V~T+(~-~~)G-((OG)~~-+-~(I-~~)~(~~R)+ 

+4(1 -v)[r.(~R)-(VR)Sr]-r2(~2SR)+ 

+ 12(1 -v)r.Q(“*)-3r2.. (Q.‘Yj)-r3.. .(Q.V2) (2.15) 

In a Cartesian coordinate system the component uz of the vector u may 

be represented in this case as 

ux = - 2 + (3 - 4v) G, - (z %+Y 
aG 

2 t-z*)+ 

(dR, dR, dR, 
+w-w\~+~+yg +4(1 > 

-v)[z(% -2) + 

+y(%.- $$)I -(a++ys+z2);(q+$J +.%)+ 

+ 12 (l- v) hiQ,,x (2, 4 + zQsx(z, y)l -3x2(% + -%)- 

(2.16) 
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The corresponding expressions for the components u and u for the 
same vector are obtained by cyclic permutation of cooidinateg and subs- 

cripts. 

It is clear that the representation (2.14) or (2.15) includes also the 

second solution (2.8) of Papkovich in a form which is free of any inter- 

relation among the harmonic functions entering into it. 

If the stress tensor u is introduced by means of Hooke’s law 

E 
a= 2(1-V) ( 

Vu+uV+&+I) 

where E is the elastic modulus, then the following representation for 

this tensor is obtained, using equation (2.15) 

’ 
o = 2(1--v) 

(2F2F + v” X T -T x ~8-j-2(1-2v) (vG+GV) - 

-2(G/“G)~r+4v(~~G)I+4(1+v)(~~R)I+8vr.(~*.R)I+ 

+4(1-v)[~.(C/*R)+(R’17~)~r-2(~~R).r]-2r~(~~.R)- 

-4v[(vs.R) r+ r(V”.R)]+l2vr.(Q”;*‘.,) I-12r.(Q.v)- 

- 2rs . . (Q. 0”) + 12 (1 - v) [Q(l;z) + Q”;“’ + ,. (Q’“9) + ,.* (Q”;“v)J__ 
- _. 

- 6 lrZ . - @A”Hr*. . @V”>J> (2.17) 

Here, in the underlined tensorial expressions, transposition of dyadic 

factors is assumed, or transposition of subscripts in coordinate repre- 
sentations. 

We give below the expressions for the coordinate canponents of the 
tensor u in a Cartesian system which follow from the equation (2.17): 



On the basic equations of the rtatic theory of plasticity 667 

+,1-24(~+~)-(x~+y~+z~)_ 
-4(1--v)z~ -2v(y$+z$ *-2(z3-& J 

im #R 

aaRz + Y&)- 

-2v(y -$ + 2 ~)+2(1-v)[5~(~-t_a~)+ 

#R, a2R 

+yw+yjg I 

3% aR, 
-(("*+Y2 + ")w ( 

aR, aR, 
y+-=+ar > + 

+ 6(1 -4 II Qvr+Qzy+x T+ ( aQ,Z ~,]_3[y2$(Eg+!$)+ 

+4L(f%+!!$L)J _xa21(.!!g+!!!?&} 
ayaz 

(2.19) 

The remaining expressions are obtained from the above by cyclic per- 
mutation of coordinates and subscripts. 

The availability of the general expressions for the displacement 

vector and the stress tensor Riven above, which contain harmonic func- 

tions in various combinations, will, by means of appropriate selection 

of these functions.permit these expressions to be made more suitable to 
the special features of concrete problems. 
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